Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 708
Filtrar
1.
Chem Pharm Bull (Tokyo) ; 70(1): 85-88, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34980739

RESUMO

The electrophilic amination of nitrogen-based nucleophiles, including strong organic bases, was conducted in an Et2O solvent using O-(mesitylenesulfonyl)hydroxylamine. Aliphatic tert-amines and N,N,N'-(trialkyl)amidines rapidly formed precipitates of the corresponding aminated salts in high yields. The amination of the highly basic and sterically hindered N,N,N',N',N″-(pentaalkyl)guanidines was achieved under modified conditions, although the yields were moderate because of a competing side reaction caused by the acid-base equilibrium.


Assuntos
Amidinas/síntese química , Aminas/síntese química , Éteres/química , Guanidinas/síntese química , Amidinas/química , Aminação , Aminas/química , Guanidinas/química , Estrutura Molecular , Sais/síntese química , Sais/química , Solventes/química
2.
Int J Mol Sci ; 23(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35054915

RESUMO

The choice of effective biocides used for routine hospital practice should consider the role of disinfectants in the maintenance and development of local resistome and how they might affect antibiotic resistance gene transfer within the hospital microbial population. Currently, there is little understanding of how different biocides contribute to eDNA release that may contribute to gene transfer and subsequent environmental retention. Here, we investigated how different biocides affect the release of eDNA from mature biofilms of two opportunistic model strains Pseudomonas aeruginosa ATCC 27853 (PA) and Staphylococcus aureus ATCC 25923 (SA) and contribute to the hospital resistome in the form of surface and water contaminants and dust particles. The effect of four groups of biocides, alcohols, hydrogen peroxide, quaternary ammonium compounds, and the polymeric biocide polyhexamethylene guanidine hydrochloride (PHMG-Cl), was evaluated using PA and SA biofilms. Most biocides, except for PHMG-Cl and 70% ethanol, caused substantial eDNA release, and PHMG-Cl was found to block biofilm development when used at concentrations of 0.5% and 0.1%. This might be associated with the formation of DNA-PHMG-Cl complexes as PHMG-Cl is predicted to bind to AT base pairs by molecular docking assays. PHMG-Cl was found to bind high-molecular DNA and plasmid DNA and continued to inactivate DNA on surfaces even after 4 weeks. PHMG-Cl also effectively inactivated biofilm-associated antibiotic resistance gene eDNA released by a pan-drug-resistant Klebsiella strain, which demonstrates the potential of a polymeric biocide as a new surface-active agent to combat the spread of antibiotic resistance in hospital settings.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , DNA Bacteriano/efeitos dos fármacos , Desinfetantes/farmacologia , Guanidinas/farmacologia , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , DNA Bacteriano/química , Desinfetantes/química , Guanidinas/síntese química , Guanidinas/química , Conformação de Ácido Nucleico/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Relação Estrutura-Atividade
3.
Int J Mol Sci ; 22(22)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34830187

RESUMO

1,2,4-Oxadiazole is a heterocycle with wide reactivity and many useful applications. The reactive O-N bond is usually reduced using molecular hydrogen to obtain amidine derivatives. NH4CO2H-Pd/C is here demonstrated as a new system for the O-N reduction, allowing us to obtain differently substituted acylamidine, acylguanidine and diacylguanidine derivatives. The proposed system is also effective for the achievement of a reductive rearrangement of 5-(2'-aminophenyl)-1,2,4-oxadiazoles into 1-alkylquinazolin-4(1H)-ones. The alkaloid glycosine was also obtained with this method. The obtained compounds were preliminarily tested for their biological activity in terms of their cytotoxicity, induced oxidative stress, α-glucosidase and DPP4 inhibition, showing potential application as anti-diabetics.


Assuntos
Formiatos/química , Guanidinas/química , Hipoglicemiantes/química , Oxidiazóis/química , Paládio/química , Quinazolinonas/química , Células A549 , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus/enzimologia , Diabetes Mellitus/prevenção & controle , Dipeptidil Peptidase 4/metabolismo , Guanidinas/síntese química , Humanos , Hipoglicemiantes/farmacologia , Modelos Químicos , Estrutura Molecular , Oxirredução , alfa-Glucosidases/metabolismo
4.
Bioorg Med Chem Lett ; 52: 128388, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34600035

RESUMO

So far, only little is known about the internalization process of the histamine H2 receptor (H2R). One promising approach to study such dynamic processes is the use of agonistic fluorescent ligands. Therefore, a series of carbamoylguanidine-type H2R agonists containing various fluorophores, heterocycles, and linkers (28-40) was synthesized. The ligands were pharmacologically characterized in several binding and functional assays. These studies revealed a significantly biased efficacy (Emax) for some of the compounds, e.g. 32: whereas 32 acted as strong partial (Emax: 0.77, mini-Gs recruitment) or full agonist (Emax: 1.04, [35S]GTPγS binding) with respect to G protein activation, it was only a weak partial agonist regarding ß-arrestin1/2 recruitment (Emax: 0.09-0.12) and failed to promote H2R internalization (confocal microscopy). On the other hand, H2R internalization was observed for compounds that exhibited moderate agonistic activity in the ß-arrestin1/2 pathways (Emax ≥ 0.22). The presented differently-biased fluorescent ligands are versatile molecular tools for future H2R studies on receptor trafficking and internalization e.g. using fluorescence microscopy.


Assuntos
Guanidinas/farmacologia , Agonistas dos Receptores Histamínicos/farmacologia , Receptores Histamínicos H2/metabolismo , Relação Dose-Resposta a Droga , Guanidinas/síntese química , Guanidinas/química , Agonistas dos Receptores Histamínicos/síntese química , Agonistas dos Receptores Histamínicos/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
5.
Phys Chem Chem Phys ; 23(37): 21130-21138, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34528038

RESUMO

As global warming due to CO2 emissions has become a widely recognized concern, CO2 capture, sequestration, neutralization, and conversion have become possible solutions to address this concern. Among these approaches, the conversion of CO2 into fuels or value-added products has attracted considerable attention. In this work, we report the high-efficiency conversion of CO2 to important industrial raw materials for pharmaceutical compounds, quinazoline-2,4(1H,3H)-diones, via reactions with 2-aminobenzonitriles at room temperature and under ambient pressure, with high conversion yields (91.5-99.3%). 1,8-Diazabicyclo-[5.4.0]-undec-7-ene (DBU), 1,1,3,3-tetramethylguanidine (TMG), and cholinium (Ch) ammonium-based ionic liquids (ILs) are employed as catalysts during the process. Cations with a pKa value near 11.9 and anions with a pKa value range of 10 to 15 are necessary for the reaction. The experimental results indicate that the ionic liquid pair [HDBU+][3-Cl-PhO-] has high efficiency under very mild conditions, obtaining high product yields of 91.5% at 25 °C and 1 atm and 99.3% at 30 °C and 1 atm. More importantly, the catalysts retain high efficiency and activity after 5 consecutive cycles. To gain insightful understanding of the reaction, density functional theory (DFT) calculations were conducted to study the reaction mechanism. The computational results indicate that the catalytic process contains three stages: cyano activation, intramolecular rearrangement, and intramolecular cyclization. Of these, the rate-determining step is cyano activation, which shows an energy barrier of 24.5 kcal mol-1. Tuning the types of ions in ILs can effectively reduce this energy barrier and allow high efficiencies.


Assuntos
Dióxido de Carbono/química , Quinazolinas/química , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Catálise , Ciclização , Teoria da Densidade Funcional , Guanidinas/síntese química , Guanidinas/química , Líquidos Iônicos/síntese química , Líquidos Iônicos/química , Nitrilas/química , Pressão , Quinazolinas/síntese química , Temperatura
6.
J Med Chem ; 64(15): 11395-11417, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34314189

RESUMO

We report a series of synthetic cationic amphipathic barbiturates inspired by the pharmacophore model of small antimicrobial peptides (AMPs) and the marine antimicrobials eusynstyelamides. These N,N'-dialkylated-5,5-disubstituted barbiturates consist of an achiral barbiturate scaffold with two cationic groups and two lipophilic side chains. Minimum inhibitory concentrations of 2-8 µg/mL were achieved against 30 multi-resistant clinical isolates of Gram-positive and Gram-negative bacteria, including isolates with extended spectrum ß-lactamase-carbapenemase production. The guanidine barbiturate 7e (3,5-di-Br) demonstrated promising in vivo antibiotic efficacy in mice infected with clinical isolates of Escherichia coli and Klebsiella pneumoniae using a neutropenic peritonitis model. Mode of action studies showed a strong membrane disrupting effect and was supported by nuclear magnetic resonance and molecular dynamics simulations. The results express how the pharmacophore model of small AMPs and the structure of the marine eusynstyelamides can be used to design highly potent lead peptidomimetics against multi-resistant bacteria.


Assuntos
Antibacterianos/farmacologia , Barbitúricos/farmacologia , Produtos Biológicos/farmacologia , Guanidinas/farmacologia , Indóis/farmacologia , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Tensoativos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Barbitúricos/síntese química , Barbitúricos/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Guanidinas/síntese química , Guanidinas/química , Indóis/síntese química , Indóis/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Proteínas Citotóxicas Formadoras de Poros/síntese química , Proteínas Citotóxicas Formadoras de Poros/química , Relação Estrutura-Atividade , Tensoativos/síntese química , Tensoativos/química
7.
Molecules ; 26(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200418

RESUMO

This paper reports the synthesis of branched alkylene guanidines using microfluidic technologies. We describe the preparation of guanidine derivatives at lower temperatures, and with significantly less time than that required in the previously applicable method. Furthermore, the use of microfluidics allows the attainment of high-purity products with a low residual monomer content, which can expand the range of applications of this class of compounds. For all the samples obtained, the molecular-weight characteristics are calculated, based on which the optimal condensation conditions are established. Additionally, in this work, the antiviral activity of the alkylene guanidine salt against the SARS-CoV-2 virus is confirmed.


Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Guanidinas/síntese química , Guanidinas/farmacologia , Microfluídica/métodos , SARS-CoV-2/efeitos dos fármacos , Animais , COVID-19 , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Chlorocebus aethiops , Concentração Inibidora 50 , Espectrometria de Massas por Ionização por Electrospray , Células Vero
8.
J Med Chem ; 64(12): 8333-8353, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34097384

RESUMO

Acid-sensitive ion channels (ASICs) are sodium channels partially permeable to Ca2+ ions, listed among putative targets in central nervous system (CNS) diseases in which a pH modification occurs. We targeted novel compounds able to modulate ASIC1 and to reduce the progression of ischemic brain injury. We rationally designed and synthesized several diminazene-inspired diaryl mono- and bis-guanyl hydrazones. A correlation between their predicted docking affinities for the acidic pocket (AcP site) in chicken ASIC1 and their inhibition of homo- and heteromeric hASIC1 channels in HEK-293 cells was found. Their activity on murine ASIC1a currents and their selectivity vs mASIC2a were assessed in engineered CHO-K1 cells, highlighting a limited isoform selectivity. Neuroprotective effects were confirmed in vitro, on primary rat cortical neurons exposed to oxygen-glucose deprivation followed by reoxygenation, and in vivo, in ischemic mice. Early lead 3b, showing a good selectivity for hASIC1 in human neurons, was neuroprotective against focal ischemia induced in mice.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/uso terapêutico , Canais Iônicos Sensíveis a Ácido/metabolismo , Guanidinas/uso terapêutico , Hidrazonas/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Bloqueadores do Canal Iônico Sensível a Ácido/síntese química , Bloqueadores do Canal Iônico Sensível a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/química , Animais , Sítios de Ligação , Células CHO , Galinhas , Cricetulus , Desenho de Fármacos , Guanidinas/síntese química , Guanidinas/metabolismo , Células HEK293 , Humanos , Hidrazonas/síntese química , Hidrazonas/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/metabolismo , Ligação Proteica , Ratos , Relação Estrutura-Atividade
9.
J Med Chem ; 64(12): 8684-8709, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34110814

RESUMO

3-(2-Amino-4-methylthiazol-5-yl)propyl-substituted carbamoylguanidines are potent, subtype-selective histamine H2 receptor (H2R) agonists, but their applicability as pharmacological tools to elucidate the largely unknown H2R functions in the central nervous system (CNS) is compromised by their concomitant high affinity toward dopamine D2-like receptors (especially to the D3R). To improve the selectivity, a series of novel carbamoylguanidine-type ligands containing various heterocycles, spacers, and side residues were rationally designed, synthesized, and tested in binding and/or functional assays at H1-4 and D2long/3 receptors. This study revealed a couple of selective candidates (among others 31 and 47), and the most promising ones were screened at several off-target receptors, showing good selectivities. Docking studies suggest that the amino acid residues (3.28, 3.32, E2.49, E2.51, 5.42, and 7.35) are responsible for the different affinities at the H2- and D2long/3-receptors. These results provide a solid base for the exploration of the H2R functions in the brain in further studies.


Assuntos
Guanidinas/farmacologia , Agonistas dos Receptores Histamínicos/farmacologia , Receptores Histamínicos H2/metabolismo , Tiazóis/farmacologia , Animais , Sítios de Ligação , Guanidinas/síntese química , Guanidinas/metabolismo , Cobaias , Células HEK293 , Agonistas dos Receptores Histamínicos/síntese química , Agonistas dos Receptores Histamínicos/metabolismo , Humanos , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Ratos , Receptores de Dopamina D2/química , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/química , Receptores de Dopamina D3/metabolismo , Receptores Histamínicos H2/química , Células Sf9 , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/metabolismo
10.
Acc Chem Res ; 54(8): 1866-1877, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33733746

RESUMO

Antimicrobial resistance to existing antibiotics represents one of the greatest threats to human health and is growing at an alarming rate. To further complicate treatment of bacterial infections, many chronic infections are the result of bacterial biofilms that are tolerant to treatment with antibiotics because of the presence of metabolically dormant persister cell populations. Together these threats are creating an increasing burden on the healthcare system, and a "preantibiotic" age is on the horizon if significant action is not taken by the scientific and medical communities. While the golden era of antibiotic discovery (1940s-1960s) produced most of the antibiotic classes in clinical use today, followed by several decades of limited development, there has been a resurgence in antibiotic drug discovery in recent years fueled by the academic and biotech sectors. Historically, great success has been achieved by developing next-generation variants of existing classes of antibiotics, but there remains a dire need for the identification of novel scaffolds and/or antimicrobial targets to drive future efforts to overcome resistance and tolerance. In this regard, there has been no more valuable source for the identification of antibiotics than natural products, with 69-77% of approved antibiotics either being such compounds or being derived from them.Our group has developed a program centered on the chemical synthesis and chemical microbiology of marine natural products with unusual structures and promising levels of activity against multidrug-resistant (MDR) bacterial pathogens. As we are motivated by preparing and studying the biological effects of these molecules, we are not initially pursuing a biological question but instead are allowing the observed phenotypes and activities to guide the ultimate project direction. In this Account, our recent efforts on the synoxazolidinone, lipoxazolidinone, and batzelladine natural products will be discussed and placed in the context of the field's greatest challenges and opportunities. Specifically, the synoxazolidinone family of 4-oxazolidinone-containing natural products has led to the development of several chemical methods to prepare antimicrobial scaffolds and has revealed compounds with potent activity as adjuvants to treat bacterial biofilms. Bearing the same 4-oxazolidinone core, the lipoxazolidinones have proven to be potent single-agent antibiotics. Finally, our synthetic efforts toward the batzelladines revealed analogues with activity against a number of MDR pathogens, highlighted by non-natural stereochemical isomers with superior activity and simplified synthetic access. Taken together, these studies provide several distinct platforms for the development of novel therapeutics that can add to our arsenal of scaffolds for preclinical development and can provide insight into the biochemical processes and pathways that can be targeted by small molecules in the fight against antimicrobial-resistant and -tolerant infections. We hope that this work will serve as inspiration for increased efforts by the scientific community to leverage synthetic chemistry and chemical microbiology toward novel antibiotics that can combat the growing crisis of MDR and tolerant bacterial infections.


Assuntos
Antibacterianos/síntese química , Produtos Biológicos/síntese química , Alcaloides/síntese química , Alcaloides/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Guanidina/análogos & derivados , Guanidina/síntese química , Guanidina/farmacologia , Guanidinas/síntese química , Guanidinas/farmacologia , Testes de Sensibilidade Microbiana , Oxazolidinonas/síntese química , Oxazolidinonas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Estereoisomerismo , Relação Estrutura-Atividade
11.
Bioorg Med Chem Lett ; 40: 127939, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33713780

RESUMO

A novel series of guanidinebenzoate enteropeptidase and trypsin dual inhibitors has been discovered and SAR studies were conducted. Optimization was focused on improving properties for gut restriction, including increased aqueous solubility, lower cellular permeability, and reduced oral bioavailability. Lead compounds were identified with efficacy in a mouse fecal protein excretion study.


Assuntos
Benzoatos/farmacologia , Enteropeptidase/antagonistas & inibidores , Guanidinas/farmacologia , Inibidores da Tripsina/farmacologia , Animais , Benzoatos/síntese química , Benzoatos/farmacocinética , Células CHO , Bovinos , Cricetulus , Dieta Hiperlipídica , Fezes/química , Guanidinas/síntese química , Guanidinas/farmacocinética , Humanos , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/enzimologia , Camundongos Endogâmicos C57BL , Estrutura Molecular , Obesidade/tratamento farmacológico , Obesidade/enzimologia , Proteínas/metabolismo , Relação Estrutura-Atividade , Inibidores da Tripsina/síntese química , Inibidores da Tripsina/farmacocinética
12.
Eur J Med Chem ; 214: 113190, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33548637

RESUMO

Even today, the role of the histamine H2 receptor (H2R) in the central nervous system (CNS) is widely unknown. In previous research, many dimeric, high-affinity and subtype-selective carbamoylguanidine-type ligands such as UR-NK22 (5, pKi = 8.07) were reported as H2R agonists. However, their applicability to the study of the H2R in the CNS is compromised by their molecular and pharmacokinetic properties, such as high molecular weight and, consequently, a limited bioavailability. To address the need for more drug-like H2R agonists with high affinity, we synthesized a series of monomeric (thio)carbamoylguanidine-type ligands containing various spacers and side-chain moieties. This structural simplification resulted in potent (partial) agonists (guinea pig right atrium, [35S]GTPγS and ß-arrestin2 recruitment assays) with human (h) H2R affinities in the one-digit nanomolar range (pKi (139, UR-KAT523): 8.35; pKi (157, UR-MB-69): 8.69). Most of the compounds presented here exhibited an excellent selectivity profile towards the hH2R, e.g. 157 being at least 3800-fold selective within the histamine receptor family. The structural similarities of our monomeric ligands to pramipexole (6), a dopamine receptor agonist, suggested an investigation of the binding behavior at those receptors. The target compounds were (partial) agonists with moderate affinity at the hD2longR and agonists with high affinity at the hD3R (e.g. pKi (139, UR-KAT523): 7.80; pKi (157, UR-MB-69): 8.06). In summary, we developed a series of novel, more drug-like H2R and D3R agonists for the application in recombinant systems in which either the H2R or the D3R is solely expressed. Furthermore, our ligands are promising lead compounds in the development of selective H2R agonists for future in vivo studies or experiments utilizing primary tissue to unravel the role and function of the H2R in the CNS.


Assuntos
Agonistas de Dopamina/farmacologia , Guanidinas/farmacologia , Receptores de Dopamina D3/agonistas , Receptores Histamínicos H2/metabolismo , Animais , Células Cultivadas , Agonistas de Dopamina/síntese química , Agonistas de Dopamina/química , Relação Dose-Resposta a Droga , Guanidinas/síntese química , Guanidinas/química , Cobaias , Células HEK293 , Humanos , Ligantes , Estrutura Molecular , Relação Estrutura-Atividade
13.
Molecules ; 26(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450992

RESUMO

Mitogen- and Stress-Activated Kinase 1 (MSK1) is a nuclear kinase, taking part in the activation pathway of the pro-inflammatory transcription factor NF-kB and is demonstrating a therapeutic target potential in inflammatory diseases such as asthma, psoriasis and atherosclerosis. To date, few MSK1 inhibitors were reported. In order to identify new MSK1 inhibitors, a screening of a library of low molecular weight compounds was performed, and the results highlighted the 6-phenylpyridin-2-yl guanidine (compound 1a, IC50~18 µM) as a starting hit for structure-activity relationship study. Derivatives, homologues and rigid mimetics of 1a were designed, and all synthesized compounds were evaluated for their inhibitory activity towards MSK1. Among them, the non-cytotoxic 2-aminobenzimidazole 49d was the most potent at inhibiting significantly: (i) MSK1 activity, (ii) the release of IL-6 in inflammatory conditions in vitro (IC50~2 µM) and (iii) the inflammatory cell recruitment to the airways in a mouse model of asthma.


Assuntos
Desenho de Fármacos , Guanidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Células Cultivadas , Guanidinas/síntese química , Guanidinas/química , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
14.
Nat Prod Res ; 35(9): 1484-1490, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-31429320

RESUMO

A series of novel hydrocarbylidene nitrohydrazinecarboximidamides were designed and synthesized using an insecticidal natural product Galegine as a lead compound. The bioassay results show that the target compounds exhibited moderate to good insecticidal activities against Hyalopterus pruni Geoffroy at a concentration of 200 mg/L, and most compounds show excellet insecticidal activities against Aphis gossypii Glover. In particular, compounds IIc-01, IIc-03, IIe-02 and IIf-01 show the equal activities to a commercial pesticide Imidacloprid with their LC50 values are 0.21 mg/L, 0.27 mg/L, 0.12 mg/L and 0.24 mg/L, respectively, and compounds IIc-02 and IIe-05 show 10 times insecticidal activities as much as Imidacloprid with their LC50 values both are 0.02 mg/L. Structure-activity relationship and 3D-QSAR analyses indicate that the introduction of fluorine atom is useful for increasing the insecticidal activity of target compounds.


Assuntos
Afídeos/efeitos dos fármacos , Produtos Biológicos/farmacologia , Guanidinas/síntese química , Guanidinas/farmacologia , Animais , Guanidinas/química , Inseticidas/síntese química , Inseticidas/química , Inseticidas/farmacologia , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Relação Quantitativa Estrutura-Atividade , Relação Estrutura-Atividade
15.
Int J Nanomedicine ; 15: 4877-4898, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32753869

RESUMO

BACKGROUND: Although dynamics and uses of modified nanoparticles (NPs) as orally administered macromolecular drugs have been researched for many years, measures of molecule stability and aspects related to important transport-related mechanisms which have been assessed in vivo remain as relatively under characterized. Thus, our aim was to develop a novel type of oral-based delivery system for insulin and to overcome barriers to studying the stability, transport mechanisms, and efficacy in vivo of the delivery system. METHODS: NPs we developed and tested were composed of insulin (INS), dicyandiamide-modified chitosan (DCDA-CS), cell-penetrating octaarginine (r8), and hydrophilic hyaluronic acid (HA) and were physically constructed by electrostatic self-assembly techniques. RESULTS: Compared to free-insulin, levels of HA-DCDA-CS-r8-INS NPs were retained at more desirable measures of biological activity in our study. Further, our assessments of the mechanisms for NPs suggested that there were high measures of cellular uptake that mainly achieved through active transport via lipid rafts and the macropinocytosis pathway. Furthermore, investigations of NPs indicated their involvement in caveolae-mediated transport and in the DCDA-CS-mediated paracellular pathway, which contributed to increasing the efficiency of sequential transportation from the apical to basolateral areas. Accordingly, high efficiency of absorption of NPs in situ for intestinal loop models was realized. Consequently, there was a strong induction of a hypoglycemic effect in diabetic rats of NPs via orally based administrations when compared with measures related to free insulin. CONCLUSION: Overall, the dynamics underlying and influenced by HA-DCDA-CS-r8-INS may hold great promise for stability of insulin and could help overcome interference by the epithelial barrier, and thus showing a great potential to improve the efficacy of orally related treatments.


Assuntos
Quitosana/química , Ácido Hialurônico/química , Insulina/administração & dosagem , Nanopartículas Multifuncionais/química , Nanopartículas/química , Administração Oral , Animais , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Morte Celular/efeitos dos fármacos , Quitosana/síntese química , Diabetes Mellitus Experimental/tratamento farmacológico , Impedância Elétrica , Endocitose/efeitos dos fármacos , Guanidinas/síntese química , Guanidinas/química , Humanos , Ácido Hialurônico/síntese química , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Insulina/uso terapêutico , Absorção Intestinal/efeitos dos fármacos , Masculino , Muco/metabolismo , Nanopartículas/ultraestrutura , Ratos , Solubilidade , Suínos
16.
Phys Chem Chem Phys ; 22(27): 15582-15591, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32613973

RESUMO

Ionic liquids (ILs) have been extensively used for stabilization and long-term DNA storage. However, molecular level understanding of the role of the hydrogen bond of DNA with ILs in its stabilization is still inadequate. Two ILs, namely, 1,1,3,3-tetramethylguanidinium acetate (TMG) and 2,2-diethyl-1,1,3,3-tetramethylguanidinium acetate (DETMG), have been synthesized, of which TMG has a hydrogen bonding N-H group whereas DETMG does not contain any hydrogen bonding site. It has been found that both TMG and DETMG cations interact in the groove region of DNA; however, their mode of interaction is distinctly different, which causes the stabilization of DNA in the presence of TMG, whereas the effect is opposite in the case of DETMG. It is apparent from the data that only the accommodation of ILs in the groove region is not enough for the stabilization of DNA. MD simulation and spectroscopic studies combinedly indicate that the hydrogen bonding capability of the TMG cation enhances the hydrogen bonding between the Watson-Crick base pairs of DNA, resulting in its stabilization. In contrast, the bigger size as well as the absence of the hydrogen bonding site of the DETMG cation perturbs the minor groove width and base pair step parameters of DNA during its intrusion into the minor groove, which decreases the hydrogen bond between the Watson-Crick base pairs of DNA, leading to destabilization.


Assuntos
DNA/química , Guanidinas/química , Líquidos Iônicos/química , Simulação de Dinâmica Molecular , Dicroísmo Circular , Guanidinas/síntese química , Ligação de Hidrogênio , Líquidos Iônicos/síntese química , Conformação de Ácido Nucleico , Espectrofotometria Ultravioleta
17.
J Med Chem ; 63(14): 7653-7662, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32571015

RESUMO

Therapeutic targeting of the norepinephrine transporter (NET) function with benzylguanidine (BG), conjugated with the high-affinity thyrointegrin αvß3 antagonist triazole tetraiodothyroacetic acid, TAT, via noncleavable bonding to poly(ethylene glycol) (PEG400) (P) might allow for effective treatment options in neuroblastoma. BG-P-TAT is a dual-targeting agent, targeting the NET function and the thyrointegrin αvß3 receptors that are overexpressed in neuroblastoma and other neuroendocrine tumors. Various cancer cells and actively dividing tumor-endothelial cells express the thyrointegrin αvß3 receptors. In this work, the novel compound BG-P-TAT was synthesized and evaluated in the neuroblastoma SK-N-FI cell line for improved targeting and to offer a new strategy for patients with neuroblastoma. BG-P-TAT demonstrated significant suppression of neuroblastoma tumor progression, growth, and viability in a dose-dependent manner. In conclusion, BG-P-TAT represents a potential lead candidate for the treatment of neuroblastoma and other neuroendocrine tumors.


Assuntos
Antineoplásicos/uso terapêutico , Integrina alfaVbeta3/antagonistas & inibidores , Neuroblastoma/tratamento farmacológico , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Guanidinas/síntese química , Guanidinas/uso terapêutico , Humanos , Camundongos Nus , Necrose/induzido quimicamente , Tiroxina/análogos & derivados , Tiroxina/uso terapêutico , Triazóis/síntese química , Triazóis/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Chemistry ; 26(39): 8608-8620, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32319110

RESUMO

An unsymmetrical guanidine-cyclopropenimine proton sponge DAGUN and the related BF2 -chelate DAGBO are reported. Insight into the structural, electronic, bonding and photophysical properties of these two molecules are presented. Joint experimental and theoretical studies reveal the protonated form of DAGUN possesses an intramolecular N⋅⋅⋅H-N hydrogen bond which affords a high experimental pKBH+ of 26.6 (computed=26.3). Photophysical studies show that in solution DAGUN displays a green emission at 534 nm, with a large Stokes shift of 235 nm (14,718 cm-1 ). In contrast, the conjugate acid DAGUN-H+ is only weakly emissive due to attenuated intramolecular charge transfer. X-ray diffraction studies reveal that DAGBO contains a stable tetracoordinate boronium cation, reminiscent of the well-established BODIPY family of dyes. In solution, DAGBO exhibits a strong blue emission at 450 nm coupled with a large Stokes shift (Δλ=158 nm, Δν=11,957 cm-1 ) and quantum yield of 62 %, upon excitation at 293 nm. DAGBO sets the stage as the first entry into a new class of boron-difluoride diaminonaphthalenes (BOFDANs) that represent highly fluorescent and tunable next-generation dyes with future promise for biosensing and bioimaging applications.


Assuntos
Compostos de Boro/química , Corantes Fluorescentes/química , Guanidinas/química , Ionóforos/química , Guanidinas/síntese química , Ligação de Hidrogênio , Prótons
19.
J Am Chem Soc ; 142(9): 4349-4355, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32049533

RESUMO

Nanocarrier-mediated protein delivery is a promising strategy for fundamental research and therapeutic applications. However, the efficacy of the current platforms for delivery into cells is limited by endosomal entrapment of delivered protein cargo with concomitantly inefficient access to the cytosol and other organelles, including the nucleus. We report here a robust, versatile polymeric-protein nanocomposite (PPNC) platform capable of efficient (≥90%) delivery of proteins to the cytosol. We synthesized a library of guanidinium-functionalized poly(oxanorborneneimide) (PONI) homopolymers with varying molecular weights to stabilize and deliver engineered proteins featuring terminal oligoglutamate "E-tags". The polymers were screened for cytosolic delivery efficiency using imaging flow cytometry with cytosolic delivery validated using confocal microscopy and activity of the delivered proteins demonstrated through functional assays. These studies indicate that the PPNC platform provides highly effective and tunable cytosolic delivery over a wide range of formulations, making them robust agents for therapeutic protein delivery.


Assuntos
Portadores de Fármacos/metabolismo , Integrases/metabolismo , Proteínas Luminescentes/metabolismo , Ácido Poliglutâmico/metabolismo , Polímeros/metabolismo , Portadores de Fármacos/síntese química , Guanidinas/síntese química , Guanidinas/metabolismo , Células HEK293 , Células HeLa , Humanos , Imidas/síntese química , Imidas/metabolismo , Nanocompostos/química , Polímeros/síntese química , Engenharia de Proteínas
20.
Chemistry ; 26(11): 2486-2492, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31912567

RESUMO

A highly efficient 2-chloroquinazolin-4(3H)-one rearrangement was developed that predictably generates either twisted-cyclic or ring-fused guanidines in a single operation, depending on the presence of a primary versus secondary amine in the accompanying diamine reagent. Exclusive formation of twisted-cyclic guanidines results from pairing 2-chloroquinazolinones with secondary diamines. Use of primary amine-containing diamines permits a domino quinazolinone rearrangement/intramolecular cyclization, gated through (E)-twisted-cyclic guanidines, to afford ring-fused N-acylguanidines. This scalable, structurally tolerant transformation generated 55 guanidines and delivered twisted-cyclic guanidines with robust plasma stability and an abbreviated total synthesis of an antitumor ring-fused guanidine (4 steps, 55 % yield).


Assuntos
Antineoplásicos/síntese química , Guanidinas/química , Guanidinas/síntese química , Quinazolinonas/química , Catálise , Ciclização , Diaminas/química , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...